NUMERICAL SOLUTION OF MIXED LINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS BY MODIFIED BLOCK PULSE FUNCTIONS
نویسندگان
چکیده
A numerical method based on modified block pulse functions is proposed for solving the mixed linear Volterra-Fredholm integral equations. We obtain an integration operational matrix of interval [0,T). and their integration, equations can be reduced to a system algebraic The rate convergence O(h) error analysis are discussed. Some examples provided show that have good degree accuracy.
منابع مشابه
Solution of Nonlinear Fredholm-Volterra Integral Equations via Block-Pulse Functions
In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions ...
متن کاملNumerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method
In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.
متن کاملTheory of block-pulse functions in numerical solution of Fredholm integral equations of the second kind
Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...
متن کاملNumerical solution of system of linear integral equations via improvement of block-pulse functions
In this article, a numerical method based on improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...
متن کاملNumerical solution of systems of linear Volterra integral equations using block-pulse functions
This paper generalizes Block-Pulse Functions method for solving systems of linear Volterra integral equations of the second kind. This method, using operational matrix associated with Block-Pulse Functions, reduces these types of equations to a linear lower triangular system of algebraic equations. Numerical examples are presented to illustrate the computational efficiency of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Riset dan Aplikasi Matematika (JRAM)
سال: 2021
ISSN: ['2581-0154']
DOI: https://doi.org/10.26740/jram.v5n1.p1-9